Modeling and Manipulating 3D Datasets through
the Extreme Vertices Model in the n-Dimensional Space
(nD-EVM)

Ricardo Pérez-Aguila

Universidad Tecnol6gica de la Mixteca
Carretera Huajuapan-Acatlima Km. 2.5.
Huajuapan de Le6n, Oaxaca 69000, México
ricardo.perez.aguila@gmail.com

Abstract. The objective behind this work is to describe the Extreme Vertices Model in the
n-Dimensional Space (nD-EVM) and the way it represents n-Dimensional Orthogonal
Pseudo-Polytopes (nD-OPP’s) by considering only a subset of their vertices: the Extreme
Vertices. Once we have the elements for managing nD-OPP’s through the nD-EVM, we will
exemplify the way 3D datasets can be represented through the model. These examples are
analyzed in order to compare storage requirements according to their respective representations
through voxelizations and through the nD-EVM. The basic algorithms on the nD-EVM provide us
useful information about the polytopes being modeled through our scheme.

Keywords: n-Dimensional Orthogonal Polytopes Modeling, Geometrical and Topological
Interrogations, 3D Voxelizations Compression, Computational Geomelry.

1 Introduction and Problem Statement

Coxeter defines an n-Dimensional Euclidean Polytope I, as a finite region of n-dimensional Eucli-
dean space enclosed by a finite number of (n-1)-dimensional hyperplanes [3]. The finiteness of the
region implies that the number N,.; of bounding hyperplanes satisfies the inequality Np.;>n. The part
of the polytope that lies on one of these hyperplanes is called a cell. Each cell of a I is an (n-1)D
polytope, ITy.1. The cells of a I, are Tl,2's, and so on; we thus obtain a descending sequence of
elements Iy.3, Ina, ..., IT3 (a volume), Iz (a polygon), IT; (an edge), Iy (a vertex) [3].

The representation of a polytope through a scheme of Hyperspatial Occupancy Enumeration is
essentially a list of identical hyperspatial cells occupied by the polytope. Specific types of cells,
called hypervoxels [4] are hyper-boxes (hypercubes, for example) of a fixed size that lie in a fixed
grid in the n-dimensional space. Jonas defines two kinds of hypervoxels [4]:

e Centered Hypervoxel: an n-dimensional hyper-box whose dimensions are given by x;Side,
x,Side, ..., x,Side and it is represented by the coordinates of its centroid.
o Shifted Hypervoxel: whose characteristics are same that those for the centered hypervoxel, except
that its representation is given by some of its 2" vertices.
By instantiation, we know that a 2D hypervoxel is a pixel while a 3D hypervoxel is a voxel; the term
rexel is suggested for referencing a 4D hypervoxel [4].
The collection of hyperboxes can be codified as an n-dimensional array C, . . of binary data.

The array will represent the coloration of each hypervoxel:
° If C, ... =1 theblack hypervoxel C, , . representsan occupied region from the nD space.

e If C, , . =0 the white hypervoxel C, represents an empty region from the nD space.

i XaesiXs
In fact, the set of black cells represents an nD-OPP p whose vertices coincide with some of the black
cells’ vertices.

By using the representation through a binary array, the computation of some operations just
control the operations between bits for all the elements. It is well known, for example, that Boolean
set operations are trivial under this scheme, however, the spatial complexity of an hypervoxelization
is TIm, where mj, 1 < i < n, is the length of the grid along the Xj-axis. For example, a

three-dimensional grid with m; = m; = m3 = 1000 requires to store 1 billion (1><109) voxels.

It is well known that hypervoxelizations are the native way in which some datasets are
represented and stored. Moreover, common 3D datasets such as the found in medical applications,
for example, are required to have a high degree of precision because of the importance of the

© L. Sanchez, O. Pogrebnyak and E. Rubio (Eds.)
Industrial Informatics.
Research in Computing Science 31, 2007, pp. 15-24

16 R. Pérez

information obtained from them. However, to more precision usually a cost in spatial complexity
must be paid. In this last sense, efficient procedures for compression are required such that the
precision in the datasets is not compromised or at least it is affected as minimum as possible. It is
clear that the union of the black cells in an nD hypervoxelization defines an nD polytope, in fact, an
nD Orthogonal Pseudo-Polytope (nD-OPP). The objective behind this work is to describe the
Extreme Vertices Model in the n-Dimensional Space (nD-EVM) and the way it represents nD-OPP’s
by considering only a subset of their vertices: the Extreme Vertices (Section 2). The Extreme
Vertices Model (3D-EVM) was originally presented, and widely described, in [1] for representing
2-manifold Orthogonal Polyhedra and later considering both Orthogonal Polyhedra (3D-OP’s) and
Pseudo-Polyhedra (3D-OPP’s) [2]. This model has enabled the development of simple and robust
algorithms for performing the most usual and demanding tasks on solid modeling, such as closed and
regularized Boolean operations, solid splitting, set membership classification operations and measure
operations on 3D-OPP’s. Itis natural to ask if the EVM can be extended for modeling n-Dimensional
Orthogonal Pseudo-Polytopes (nD-OPPs). In this sense, some experiments were made, in [6], where
the validity of the model was assumed true in order to represent 4D and 5D-OPPs. Finally, in [7] was
formally proved that the nD-EVM is a complete scheme for the representation of nD-OPPs. The
meaning of complete scheme was based in Requicha's set of formal criterions that every scheme
must have rigorously defined: Domain, Completeness, Uniqueness and Validity. Although the EVM
of an nD-OPP has been defined as a subset of the nD-OPP’s vertices, there is much more information
about the polytope hidden within this subset of vertices. We will describe basic procedures and
algorithms in order to obtain this information (Sections 2.6, 2.7 and 2.8). Once we have the elements
for managing nD-OPP’s through the nD-EVM, we will describe the way 3D datasets can be
represented through the model (Section 3). We will show some examples and we will compare
storage requirements according to their respective representations through voxelizations and through
the nD-EVM. We will indicate the way the basic algorithms on the nD-EVM provide useful
information about the polytopes being modeled under our scheme.

2 The Extreme Vertices Model in the n-Dimensional Space (nD-EVM)
2.1 Preliminary Background: n-Dimensional Orthogonal Pseudo-Polytopes
Definition 2.1: A Singular n-Dimensional Hvper-Box in R" is the continuous function
I": 0,1 - [01)°
x ~ I'(x)=x
For a general singular kD hyper-box ¢ we will define the boundary of c.
Definition 2.2: Forall i, 1 <i <n, the two singular (n-1)D hyper-boxes T2 and 1, are defined as

Jollows: If xe[0,1]™" then
0y (X) = 17 (X ey Xy 0 Xy Xy) = (X enes Xiy AL AT o8
2 1oy () = 1 (X ey Xy 1y Xy s X)) = (X T B s)

Definition 2.3: In a general singular nD hyper-box c we define the (i, a)-cell as Comy=colla,

The next definitions indicate what we consider as the orientation of an (n-1)D cell.
Definition 2.4: The orientation of an (n-1)D cell ., I2g is given by (-1)**.

Definition 2.5: An (n-1)D oriented cell is given by the scalar-function product D" .col"

(i.a)
Definition 2.6: A formal linear combination of singular general kD hyper-boxes, 1 < k < n, for a
closed set A is called a k-chain.

Definition 2.7 [8]: Given a singular nD hyper-box I' we define the (n-1)-chain, called the boundary

l" b) n < i+a yn
ol by o)=Z[Z("l) 'I(i.a))
i=] \ @=0,]
Definition 2.8 [8]: Given a singular general nD hyper-box c we define the (n-1)-chain, called the
b dary by < i+a n
oundary of ¢, by a(c)=2(Z -1) .cojumJ

i=] \ @=0,

Modeling and Manipulating 3D Datasets through the Extreme Vertices Model 17

Definition 2.9 [8]: The boundary of an n-chain ch. , where each c; is a singular general nD
hyper-box, is given by B(Zc,) = Za(q)

Definition 2.10: A collection ¢y, c3, ..., cx, 1 <k < 2", of general singular nD hyper-boxes is a
combination of nD hyper-boxes if and only if

k
[Qca([o,l]")=(0..;..0)]A[(Vi,j, i# J, 10, j<k)(c (0.1 # ¢,(0,11")]
In the above definition the first part of the conjunction establishes that the intersection between

all the nD general singular hyper-boxes is the origin, while the second part establishes that there are
not overlapping nD hyper-boxes.

Definition 2.11: We say that an n-Dimensional Orthogonal Pseudo-Polviope p, or just an
nD-OPP p, will be an n-chain composed by nD hyper-boxes arranged in such way that by selecting a
vertex, in any of these hyper-boxes, we have that such vertex describes a combination of nD
hyper-boxes (Definition 2.10) composed up to 2" hyper-boxes.

Describing nD-OPP’s as union of disjoint nD hyper-boxes in such way that by selecting a
vertex, in any of these hyper-boxes, we have that such vertex is surrounded up to 2" hyper-boxes,

will be very useful because in the following propositions we consider geometrical and/or topological
local analysis over such vertices and their respective incident hyper-boxes.

2.2 The nD-EVM: Foundations

Definition 2.12: Let ¢ be a combination of hyper-boxes in the n-Dimensional space. An Odd Edge
will be an edge with an odd number of incident hyper-boxes of c.

Definition 2.13: A brink or extended edge is the maximal uninterrupted segment, built out of a
sequence of collinear and contiguous odd edges of an nD-OPP.
Definition 2.14: We will call Extreme Vertices of an nD-OPP p to the ending vertices of all the
brinks in p. EV(p) will denote to the set of Extreme Vertices of p.

The brinks in an nD-OPP p can be classified according to the main axis to which they are
parallel. Since the extreme vertices mark the end of brinks in the n orthogonal directions, is that any
of the n possible sets of brinks parallel to Xi-axis, 1 <i < n, produce to the same set EV(p).

Definition 2.15: Let p be an nD-OPP. EVi(p) will denote to the set of ending or extreme vertices of
the brinks of p which are parallel to xi-axis, 1 <i <n.

Theorem 2.1 [7]: A vertex of an nD-OPP p, n 2 1, when is locally described by a set of surrounding
nD hyper-boxes, is an extreme vertex if and only if it is surrounded by an odd number of such nD
hyper-boxes.

Theorem 2.2 [7]: Any extreme vertex of an nD-OPP, n 2 1, when is locally described by a set of
surrounding nD hyper-boxes, has exactly n incident linearly independent odd edges.

Definition 2.16: Let p be an nD-OPP. A kD couplet of p, 1<k<n, is the maximal set of kD cells of p
that lies in a kD space, such that a kD cell eg belongs to a kD extended hypervolume if and only if ey
belongs to an (n-1)D cell present in &p).

Theorem 2.3 [7]: Let p be an nD-OPP with its associated sets EV(p), EVa(p), ..., EVy.1i(p), EVa(p).
Then EV)(p) = EVy(p) = ... = EV,.(p) = EVi(p).

Let Q be a finite set of points in R>. In [2] was defined the ABC-sorted set of Q as the set
resulting from sorting Q according to coordinate A, then to coordinate B, and then to coordinate C.
For instance, a set Q can be ABC-sorted is six different ways: X;X,X3, X;X3X2, X2XiX3, X2X3X,
X3X1X2 and X3X2X). Now, let p be a 3D-OPP. According to [2] the Extreme Vertices Model of p,
EVM(p), denotes to the ABC-sorted set of the extreme vertices of p. Then EVM(p) = EV(p) except
by the fact that EV(p) is not necessarily sorted. In this work we will assume that the coordinates of
extreme vertices in the Extreme Vertices Model of an nD-OPP p, EVM,(p) are sorted according to
coordinate X;, then to coordinate X,, and so on until coordinate X;. That is, we are considering the
only ordering X;...Xi...Xxs such thati-1 <i, 1 <i<n.

Definition 2.17: Let p be an nD-OPP. We will define the Extreme Vertices Model of p, denoted by
EVM,(p), as the model as only stores to all the extreme vertices of p.

18 R. Pérez

Theorem 2.4 [7): Card(EV{p))=Card(EV(p))=Card(EVM(p)) is an even number, 1 <i <n.
2.3 Sections and Slices of nD-OPP’s
Decfinition 2.18: We define the Projection Operator for (n-1)D cells, points, and set of points

respectively as follows:
o Let c(J" . (x))= (X000 X,) be an (n-1)D cell embedded in the nD space. x, (C(l('z‘,,,(x))) will denote

Gi.a)

the projection of the cell e 4)(x)) onto an (n-1)D space embedded in nD space whose

supporting hyperplane is perpendicular 10 Xy-aXis: 7 (c(I5 5, (x))) = (%100 X j0-v0r X,)
Let v=(x,...x,) @ point in R". The projection of that point in the (n-1)D space, denoted by
z,(v) s given by: z,(v) = (X Xjoeers X,)

o Let Q be a set of points in R". We define the projection of the points in Q, denoted by , Q) as
(@)

the set of points in R"™ such that 7.0y ={pe R™: p=7,(x), xe Qc R"}

In all the cases jj is the coordinate corresponding to Xj-axis to be suppressed.

Definition 2.19: Consider an nD-OPP p:
o Let pp, be the number of distinct coordinates present in the vertices of p along X;-axis, 1 <i <n.

o Let ;T(p) bethe k-th (n-1)D couplet of p which is perpendicular to X;-axis, 1 < k <np;.

Definition 2.20: A Slice is the region contained in an nD-OPP p between two consecutive couplets of
p- Slice.(p) will denote to the k-th slice of p which is bounded by i (p) and @i (p), 1 <k < np;
k+1 > = -

Definition 2.21: A Section is the (n-1)D-OPP, n > 1, resulting from the intersection between an

nD-OPP p and a (n-1)D hyperplane perpendicular to the coordinate axis X;, 1<i<n, which not coinci-

de with any (n-1)D-couplet of p. A section will be called external or internal section of p if it is empty

or not, respectively. Si(p) will refer to the k-th section of p between D! (p) and ®i, (p), 1k<npi.
C+

2.4 Computing Couplets and Sections
Theorem 2.5 [7]: The projection of the set of (n-1)D-couplets, I, (q;i(p)), of an nD-OPP P, can be

obtained by computing the regularized XOR (®) benween the projections of its previous T (L P))
i k=1

and next (s (P)) sections, ke z, (&, (P))=,(S;.,(P)) ®* 7,(S;(P)), Vke [Lnp,)

Theorem 2.6 [7]: The projection of any section, 7, (Si(p)), of an nD-OPP p, can be obtained by

computing the regularized XOR between the projection of its previous section, T (s (p)) and the
i\Pk-1 2

projection of its previous couplet 7, (q;'k (p)) :

2.5 The Regularized XOR operation on the nD-EVM

Theorem 2.7 [2]: Let p and q be two nD-OPP’s having EVM,(p) and EVM (q) as their

respective EVM’s in nD space, then EVM, (p ®*q) = EVM,(p) ® EVM (q)-

This result allows expressing a formula for computing nD-OPP’s sections from couplets and
vice-versa, by means of their corresponding Extreme Vertices Models. These formulae are obtained
by combining Theorem 2.7 with Theorem 2.5; and Theorem 2.7 with Theorem 2.6, respectively:

Corollary 2.1 2 EVM,, (7,(®,(p))) = EVM,,, (7,(S;.(P)) ® EVM,_, (7,(S.(p)))
Corollary 22 [2): EVM,, (7,(S;(p)) = EVM,_, (7,(Si.(P))) ® EVM, , (7,(®L(p)))

2.6 Basic Algorithms for the nD-EVM
According to Sections 2.2 to 2.4 we can define the following primitive operations which are based in
the functions originally presented in [2]:

Modeling and Manipulating 3D Datasets through the Extreme Vertices Model

output: An empty nD-EVM.
procedure InitEVM()
{ Returns the empty set.)

Input: An nD-EVM p

Output:

An (n-1)D-EVM embedded in (n-1)D space.

procedure ReadHvl(EVM p)

{ Extracts next (n-1)D couplet
perpendicular to X:-axis from p. }

Input: An nD-EVM p

Output: A Boolean.

Procedure EndEVM(EVM p)

{ Returns true if the end of p

along X;-axis has been reached. }

Input/Output: An
in (n-1)D space.

(n-1)D-EVM p embedded

Input:

An (n-1)D-EVM hvl embedded in

nD space.

Input/Output: An nD-EVM p

Procedure PutHvl(EVM hvl, EVM p)

{ Appends an (n-1)D couplet hvl,
which is perpendicular to

Input: A coordinate coord of type X.-axis, to p. }
CoordType (CoordType is the chosen type :

for the vertex coordinates: Integer or Input: Two nD-EVM’s p and q.

Real) Output: An nD-EVM

procedure SetCoord(EVM p, CoordType Procedure MergeXor (EVM p, EVM q)

coord)

{ Sets the X;-coordinate to coord on

{ Applies the Exclusive OR
cperation to the vertices of

19

every vertex of the (n-1)D couplet
p. For coord = 0 it performs the

projection r (p) - }

Function MergeXor performs an XOR between two nD-EVM’s, that is, it keeps all vertices
belonging to either EVM,(p) or EVMi(q) and discards any vertex that belongs to both EVM,(p) and
EVM,(q). Since the model is sorted, this function consists on a simple merging-like algorithm, and
therefore, it runs on linear time [2]. Its complexity is given by O(Card(EVM,(p)) + Card(EVM.(q))
since each vertex from EVM,(p) and EVM,(q) needs to be processed just once. Moreover, according
to Theorem 2.7, the resulting set corresponds to the regularized XOR operation between p and q.

From the above primitive operations, the Algorithms 2.1 and 2.2 may be easily derived. The
Algorithm 2.3 computes the sequence of sections of an nD-OPP p from its nD-EVM using the
previous functions [2]. It sequentially reads the projections of the (n-1)D couplets AvI of the polytope
p. Then it computes the sequence of sections using function GetSection. Each pair of sections S; and
S;j (the previous and next sections about the current hvl) is processed by a generic processing
procedure (called Process), which performs the desired actions upon S; and S;.

Input: An (n-1)D-EVM corresponding to
section S. An (n-1)D-EVM corresponding
to couplet hvl.

Output: An (n-1)D-EVM.

Procedure GetSection(EVM S, EVM hvl)

// Returns the projection of the

// next section of an nD-OPP

// whose previous section is S.

return MergeXor (S, hvl)
end-of-procedure

Algorithm 2.1. Computing EVM,,, (PACHL p))) as

p and g and returns the
resulting set. }

Input: An (n-1)D-EVM corresponding to
section S:. An (n-1)D-EVM corresponding
to section S-.
Output: An (n-1)D-EVM.
Procedure GetHvl(EVM S, EVM S.)
// Returns the projection of the
// couplet between consecutive
// sections S; and S;.
return MergeXor (S:, Sj)
end-of-procedure

Algorithm 2.2, Compuling EVM 3 (”l((p;(p))) as

EVM, (7,(SL.(p))) ® EVM,_, (,(®(p)))

Input: An nD-EVM p.
Procedure EVM_to_SectionSequence (EVM p)

EVM,_(m(Si,(p)) ® EVM,, (m(Si(p)))

EVM hvl // Current couplet.
EVM S, Sy // Previous and next sections about hvl.
hvl = InitEVM()

S: = InitEVM()
Sy = InitEVM()
hvl = ReadHvl (p)
while (Not (EndEVM(p)))
Sy = GetSection(S,
Process(S:, Sj)
S: = Sy
hvl = ReadHvl(p) // Read next couplet.
end-of-while
end-of-procedure
Algorithm 2.3. Computing the sequence of sections from an nD-OPP p represented through the nD-EVM.

hvl)

20 R. Pérez

Input: An nD-EVM p and the number n of
dimensions.
Output: The content of (n-1)D space
enclosed by the boundary of p.
Procedure BoundaryContent (EVM p, int n)
// cont stores the content of
// (n-1)D space enclosed by the

Input: An nD-EVM p and the number n of
dimensions.
output: The content of nD space
enclosed by p.
Procedure Content (EVM p, int n)
// Variable cont stores the content
// of nD space enclosed by p.
real cont = 0.0
// Couplets between a slice of p.
EVM hvll, hvl2
// Current section of p.
EVM s
if(n=1) then
// Compute the length of the input
// 1D-OPP expressed under the EVM.
return Length(p)
else
n=n-1
hvll = InitEVM()
hvl2 = InitEVM()
s = InitEVM()
hvll = ReadHvl(p)
while (Not (EndEVM(pP)))
hvl2 = ReadHvl(p)
s = GetSection(s, hvll)
// Recursive Call.
cont = cont + Content(s, n) *
dist (hvll, hvl2)
hvll = hvl2
end-of-while
return cont
end-of-else

// boundary of p.
real cont = 0.0
// Couplets between a slice of p.
EVM hvll, hvl2
EVM s // Current section of p.
if(n=2) then
// Compute the perimeter of
// the input 2D-OPP expressed
// under the 2D-EVM.
return x:Sum(p) + Xx;Sum(p)

else
n= o= A
hvll InitEVM()

hvl2 = InitEVM()
s = InitEVM()
hvll = ReadHvl (p)
while (Not (EndEVM(p)))
hvl2 = ReadHvl (p)
s = GetSection(s, hvll)
// Call to algorithm Content
// and recursive call.
cont=cont + Content(hvll, n) +
BoundaryContent (s, n) *
dist (hvll, hv12)
hvll = hvl2
end-of-while
cont = cont + Content (hvll, n)
// hvll contains the last
// couplet of p.
return cont
end-of-else

end-of-procedure end-of-procedure

Algorithm 2.4. Computing the content of nD space
enclosed by p.

2.7 Computing the Content of an nD-OPP

Now, we will describe a procedure in order to compute the content of nD space enclosed by an

nD-OPP (length of a 1D-OPP, area of a 2D-OPP, volume of a 3D-OPP, and so on). In this case we

will consider the partition induced by its Slices. Let p be an nD-OPP. The nD space enclosed by p,

denoted by Content,(p), can be computed as the sum of the contents of its nD slices (Equation 2.1):
Length(p) n=1

Algorithm 2.5. Computing the content of (n-1)D
space enclosed by the boundary of p.

C ! ={np-1 . i i
ontent,,(p) 3" Content ("_l)(S;(p))-disl(Q’Z(P)’q);d(p)) n>1

k=1
Where np; is the number of couplets of p perpendicular to X-axis; §;(p) is the k-th section of the

nD-OPP p which is perpendicular to Xi-axis and it is between couplets @i (p),®:. (p) whose
distance is given by dist(d>i(P, (p))' The Algorithm 2.4 implements Equation 2.1 in order to

compute the content of nD space enclosed by an nD-OPP p expressed through the nD-EVM.

2.8 Computing the Content of the Boundary of an nD-OPP

Now, we will describe the way to compute the content of (n-1)D space enclosed by the boundary of
an nD-OPP (perimeter of a 2D-OPP, area of the boundary of a 3D-OPP, volume of the boundary of a
4D-OPP, and so on). Let p be an nD-OPP. The (n-1)D space enclosed by p, denoted by
BoundaryContent, (p), can be computed as follows (Equation 2.2):

Modeling and Manipulating 3D Datasets through the Extreme Vertices Model 21

BoundaryContent,,_, (p) =

x,Sum(p)+ x,Sum(p) n=2

np, np,-1
Zp:CamenI i (d’i(p)) + ﬂz: BoundaryContent L (S: (p)) -dist (<l>2 (p), <]>i,,(p)) n>2
k=1 k=1

According to previous equation we reach the basic case when n = 2. In this situation, the perimeter of
a 2D-OPP p is computed as x,Sum(p)+ x,Sum(p) where x,Sum(p) is the sum of the lengths of all

brinks parallel to Xj-axis. The Algorithm 2.5 implements Equation 2.2 in order to compute the
content of (n-1)D space enclosed by the boundary of p expressed through the nD-EVM.

3 Manipulating “Real World” 3D Datasets with the nD-EVM

In this section we will describe some results related to the conversion from voxelizations to our
specific implementation of nD-EVM when n = 3. Such voxelizations correspond to “real world”
datasets taken from the MoViBio Research Group [5], and the University of Tiibingen’s Project
VolRen [9]. As commented in the Section 1, a 3D voxelization is a set of black and white cells where
each cell is a convex orthogonal polyhedron. The set of black cells represents an nD-OPP p whose
vertices coincide with some of the black cells’ vertices. Each of these vertices may be common to
(surrounded by) up to 8 black cells. So, according to Theorem 2.1, if a vertex is surrounded by an
odd number of black cells then it is an Extreme Vertex. Thus, a 3D voxelization to the 3D-EVM
conversion algorithm is as simple as collecting every vertex that belongs to and odd number of cells,
and discarding the remaining vertices. The Tables 1 and 2 show the measures we obtained when we
converted 3D voxelizations, taken from the mentioned research groups, to our implementation in the
Java Language, of the nD-EVM when n = 3. We report the following execution times:

e Time for computing the conversion from 3D voxelization to 3D-EVM.

Time for computing the content of the 3D-OPP (Section 2.7) expressed under the 3D-EVM.

Time for computing the boundary content of the 3D-OPP (Section 2.8) represented by the EVM.
Time for computing the 2D sections, starting from the 2D couplets (Section 2.6) perpendicular to
X-axis, of the resulting 3D-OPP.

The descriptions corresponding to the set of objects being modeled in each voxelization are given in
Tables 1 and 2, as well as the total number of voxels in each representation. The conversions and
tasks were performed in a computer with Intel Celeron Processor at 900 Mhz and 256 megabytes in
RAM memory.

From Tables 1 and 2 can be observed, in first place, that the processing time for the conversion
from the 3D voxelizations to the 3D-EVM was the largest from all the considered tasks. In this
situation model Skull (Table 2) required 2,626.757 seconds (almost 45 minutes) for its conversion
while, on the other hand, the shortest time for conversion corresponds to the model Marschner/Lobb
(Table 1) with 1.332 seconds. It is interesting to observe that the model Skull does not contain the
maximum number of extreme vertices in its corresponding EVM. The 3D model Leg of Statue
(Table 1) was represented with 1,604,538 extreme vertices while Skull was represented with
1,302,134 extreme vertices, however, Leg of Statue required 480.902 seconds for its conversion to
the 3D-EVM (approximately 8 minutes). The model Marschner/Lobb has both the lowest number of
extreme vertices (872) and the lowest processing time for its conversion (1.332 seconds).

Now, let p be a 3D-OPP expressed under a voxelization with size (x;Size X x2Size X x;Size) and

with EVM;(p) as its corresponding EVM. Consider the ratio

x,Size- x,Size- x,Size

Card(EVM,(p))

As can be seen, the idea behind such ratio is to express the number of times the quantity of voxels in
the original representation of the object p is greater than the number of extreme vertices in its
corresponding representation through the 3D-EVM. For example, consider model CSF (Table 2). Its
source voxelization has size (256 x 256 x 124) which implies that we require to store 8,126,464
voxels. The 3D-EVM associated to CSF has 86,570 extreme vertices (see Table 2). Hence, our
proposed ratio gives us the value 93.87 which implies that the number of stored voxels that belong to
the original representation of the object is precisely 93.87 times greater than the number of obtained

22 R. Pérez

extreme vertices. The Table 3 shows the ratio Number-of-voxels/Number-of-Extreme-Vertices for
the models described in Tables 1 and 2. According to the results we obtained, the number of voxels
in the model Lobster is 131.38 times greater than the cardinality of its corresponding
3D-EVM. In fact, model Lobster has the largest ratio from our seven tested models. On the other
hand, the model Leg of Statue (Table 1) has a number of voxels which is 6.73 times greater than the
number of extreme vertices required for representing it. The value shared by our ratio depends on the
topology and geometry of the objects being modeled, but it shows to us the conciseness, related to
storing requirements, when we represent such objects through the EVM.

Table 1. Results from the conversion of 3D voxelizations
(Bonsai, Leg of statue, Lobster and Marschner/Lobb) to the 3D-EVM.

Voxelization size:
Name and Description:

(256 % 256 x 256) = 16,777,216 voxels
Bonsai. Computed tomography of a
bonsai tree.

EVM size: 641,462
Time for conversion: 858.905 s
Content: 3,412,818 v®
Time for computing 3D content: 33.709 s
Boundary content: 2,098,246 u?
Time for computing boundary 71.322s
content:

Time for computing 2D sections: 36.282 s

Voxelization size:
Name and Description:

(341 x 341 x93) = 10,814,133 voxels
Leg of statue. Computed tomography
of a leg of a bronze statue.

EVM size: 1,604,538
Time for conversion: 480.902 s
Content: 2,499,595 u®
Time for computing 3D content: 136.847 s
Boundary content: 3,244,280 u?
Time for computing boundary 367.579s
content:

Time for computing 2D sections: _ 130.257 s

Voxelization size:
Name and Description:

EVM size:

Time for conversion:

Content:

Time for computing 3D content:
Boundary content:

Time for computing boundary
content:

Time for computing 2D sections:

(301 x 324 x 56) = 5,461,344 voxels
Lobster. Computed tomography of a
lobster contained in a block of resin.
41,566

335.722s

3,831,352 v’

0921s

263,910 u?

1.582 s

0.751 s

Voxelization size:
Name and Description:

EVM size:

Time for conversion:

Content:

Time for computing 3D content:
Boundary content:

Time for computing boundary
content:

Time for computing 2D sections:

(41 x41 x41) = 68,921 voxels
Marschner/Lobb. Simulation of high
frequencies where 99% of the sinusoids
are right below the Nyquist frequency.
872

1.332s

68,637 v’

0.010 s

11,070 v?

0.020 s

0.001s

Modeling and Manipulating 3D Datasets through the Extreme Vertices Model 23

Table 2. Results from the conversion of 3D voxelizations (Silicium, Skull and CSF) to the 3D-EVM.

Voxelization size:
Name and Description:

(98 x 34 x 34) = 113,288 voxels
Silicium. Simulation of a silicium grid.

EVM size: 1,164
Time for conversion: 1412s
Content: 66,163 v’
Time for computing 3D content: 0.010 s
Boundary content: 11,274 v?
Time for computing boundary 0.020 s
content:

Time for computing 2D sections: 0.001 s

Voxelization size:
Name and Description:

(256 x 256 x 256) = 16,777,216 voxels
Skull. Rotational computer arm x-ray
scan of a human skull.

EVM size: 1,302,134
Time for conversion: 2,626.757 s
Content: 14,834,427 u®
Time for computing 3D content: 87.907 s
Boundary content: 2,656,000 u?
Time for computing boundary 245.873s
content:

Time for computing 2D sections: ~ 78.723 s

Voxelization size:
Name and Description:

EVM size:

Time for conversion:

Content:

Time for computing 3D content:
Boundary content:

Time for computing boundary
content:

Time for computing 2D sections:

(256 x 256 x 124) = 8,126,464 voxels
CSF. Dataset corresponding to the
Cerebro-Spinal-Fluid in a human head.
86,570

798.458 s

8,115,182 v’

2293 s

323,810 v?

3.395s

2.283s

Table 3. The ratio Number-of-voxels/Number-of-Extreme- Vertices

for the 3D voxelizations shown in Tables 1 and 2.

Voxelization Size

x,Size - x,Size - x,Size

Objectip (Number of voxels) Card(EVM;(p)) Card(EVM,(p))

Bonsai 16,777,216 641,462 26.15
Leg of Statue 10,814,133 1,604,538 6.73

Lobster 5,461,344 41,566 131.38
Marschner/Lobb 68,921 872 79.03
Silicium 113,288 1,164 97.32
Skull 16,777,216 1,302,134 12.88
CSF 8,126,464 86,570 93.87

The importance behind a “real world” 3D dataset is the information can be obtained about it. As
commented in the introduction of this section, we computed for each model shown in Tables 1 and 2,
through its corresponding 3D-EVM, the volume (ua), the area of its boundary (uz), and its sections.
The last task refers to the case if our 3D models are represented through the 3D-EVM then,
according to the procedures mentioned in Section 2.6, their sections will describe to us the interior of
the modeled objects with the objective to perform the appropriate analyses according to the
application. The 3D model Leg of Statue (that with the highest number of extreme vertices) required
the maximum processing times for computing both its volume as the area of its boundary: 136.847
seconds and 367.579 seconds respectively. Conversely, the 3D model Marschner/Lobb (that with the
lowest number of extreme vertices) required the minimum processing times for computing both its
volume as the area of its boundary: 0.01 seconds and 0.02 seconds respectively. In the case related to

24 R. Pérez

the computing of sections, we found again that Leg of Statue required the maximum processing time:
130.257 seconds. A “tie” was found in the minimum processing time for sections corresponding t(;
3D models Marschner/Lobb and Silicium (Tables 1 and 2 respectively): their sections were
computed in only one millisecond.

4 Conclusions and Future Work

In this work we have described the Extreme Vertices Model in the n-Dimensional Space
(nD-EVM). The Extreme Vertices Model allows representing nD-OPP’s by means of a single subset
of their vertices: the Extreme Vertices. Section 2 is in fact a very brief description of the capabilities
of the model because we have developed simple and robust algorithms, besides the ones presented in
this work, for performing the most usual and demanding tasks on polytopes modeling such as closed
and regularized Boolean operations, boundary extraction, and set membership classification
operations (see [2] and [7] for more details). These procedures and algorithms provide us a way to
obtain much more information than the extracted from the examples presented in- Section 3
Moreover, Table 3 shows the conciseness of the nD-EVM respect to voxelizations because we have:
obtained in all our described examples that the ratio Number-of-voxels/Number-of-Extreme-Vertices
is between 6.73 and 131.38.

In this work we have concentrated about the representation of binary voxelizations through the
EVM. However, it is well known that some devices express their outputs through 3D datasets whose
voxels contain more information besides the empty/occupied property. In this sense, we propose ;,s
future work the representation of these datasets through nD-OPP’s by considering their voxels’
additional properties as independent spatial dimensions. Our proposal implies that these datasets cz;n
be expressed and manipulated as polytopes whose number of dimensions in greater than three
Furthermore, we will consider the representation of time varying 3D and 4D datasets through the.
nD-EVM. Because of the intensive use of the XOR operation in the nD-EVM (Sections 2.4, 2.5 and
2.6), we exploit spatial and temporal redundancies between 2D and 3D frames, in these 3D, and 4D
datasets respectively, without compromising the quality of the information for the required purposes
We can guarantee, according to previous experiences, the model will represent these datasets i~n z;
very concise way.

Finally, we mention the development of other *“‘real world” practical applications under the con-
text of the nD-EVM, which are widely discussed and modeled in [7]. These practical applications
through we have showed the versatility of application of the nD-EVM, consider: (1) the representa:
tion and manipulation of 2D and 3D color animations; (2) a method for comparing images orier{led to
the evaluation of volcanoes’ activity; (3) the way the nD-EVM enhances Image Based Reasoning;
and finally, (4) an application to collision detection between 3D objects through the nD-E\}M A%s’
previously commented, details and results about these four practical applications can be found in i7]

References
1. Aguilera, A. & Ayala, D. Orthogonal Polyhedra as Geometric Bounds in Constructive Solid

Geometry. Fourth ACM Siggraph Symposium on Soli i ications '
= 56-(61')"7. oA 199'g7,g ph Symp Solid Modeling and Applications SM'97,
2. Aguilera, A. Orthogonal Polyhedra: Study and Application. PhD Thesis. Universitat Politécnica de
Catalunya, 1998.
3. Coxeter, H;]I\(/l Regular Polytopes. Dover Publications, Inc., New York, 1963.
4. Jonas, A. iryati, N. Digital Representation Schemes for 3-D Cu . i
PUB #114, The Technion - Israel Institute of Technology, Haifa, lsr:i:l,r;:?y ']l‘;;lsiincal i
5. MoViBio Research Group (Modeling and Visualization of Biomedical data). Web Site:
http://truja.Jsi.upc.edu/movibio (Site visited in May, 2007). . i
6. Pérez-Aguila, R. The Extreme Vertices Model in the 4D space and its Applications in the Visua-
lization and Analysis of Multidimensional Data Under the Context of a Geographical Informaltion
System. MSc Thesis. Universidad de las Américas, Puebla. Puebla, México, May 2003
7. Pérez-Aguila, R. Orthogonal Polytopes: Study and Application. PhD Thesis. Univers;idad de las
Américas - Pgellnla. Cholula, Puebla, México, November 13th, 2006.
8. Spivak, M. Calculus on Manifolds: A Modern A i
C};]cu]us. S ey pproach to Classical Theorems of Advanced
9. VolRen: Project Volume Rendering with Graphics : ite: : i i
tuebingen.de/areas/volren (Site visitedgin May, 200713. R i i

